Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 143: 104118, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32147410

RESUMEN

Stored rice and rice products are prone to contamination by pathogenic fungi and bacteria such as Aspergillus niger, Bacillus cereus, and Paenibacillus amylolyticus. Treatment with antimicrobial essential oils (EOs) and irradiation are options to control spoilage organisms. Microbial samples with or without fumigation with an oregano/thyme EO mixture were irradiated at 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 kGy for calculation of a D10 value. The relative sensitivity was calculated as the ratio of D10 values for the irradiation plus oregano and thyme EO combination and irradiation alone treatments. In all cases, irradiation plus fumigation with the oregano and thyme EO mixture showed increased efficacy compared with irradiation alone. The relative sensitivity of γ-ray irradiation against A. niger was 1.22, 1.33, and 1.24 for radiation dose rates of 10.445, 4.558, and 0.085 kGy/h, respectively, however against B. cereus it was 1.28, 1.45, and 1.49, and against P. amylolyticus it was 1.35, 1.33, and 1.38, for respective γ-ray irradiation dose rates. The relative sensitivity of X-ray irradiation against A. niger, B. cereus, and P. amylolyticus was 1.63, 1.21, and 1.31, respectively, at the X-ray dose rate of 0.76 kGy/h. The results showed that the relative sensitivity of γ-ray irradiation was higher against the two bacteria than the fungus, whereas X-ray showed higher sensitivity against the fungus than the two bacteria. There was no consistent positive or negative relationship between dose rate and relative sensitivity. The results demonstrated the potential of an oregano and thyme EOs mixture as an antimicrobial agent and its efficacy to increase the radiosensitization of A. niger, B. cereus, and P. amylolyticus during γ-ray or X-ray irradiation treatments.


Asunto(s)
Irradiación de Alimentos/métodos , Conservación de Alimentos/métodos , Aceites Volátiles/uso terapéutico , Aspergillus niger/efectos de los fármacos , Aspergillus niger/efectos de la radiación , Bacillus cereus/efectos de los fármacos , Bacillus cereus/efectos de la radiación , Rayos gamma , Origanum , Oryza/microbiología , Paenibacillus/efectos de los fármacos , Paenibacillus/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/farmacología , Radiometría , Thymus (Planta) , Rayos X
2.
Microb Pathog ; 141: 104008, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31991163

RESUMEN

The checkerboard method was used to study the potential interactions between eight essential oils (Basil, Cinnamon, Eucalyptus, Mandarin, Oregano, Peppermint, Tea tree, and Thyme) when used as antibacterial agents against Bacillus cereus LSPQ 2872 and Paenibacillus amylolyticus ATCC 9995. The minimum inhibitory concentration (MIC) of each essential oil (EO) and the fractional inhibitory concentration (FIC) index for the binary combinations of essential oils (EOs) were determined. According to FIC index values, some of the compound binary combinations showed an additive effect; however, Thyme/Tea tree and Cinnamon/Thyme EOs exhibited a synergistic effect against P. amylolyticus and B. cereus, respectively. Cinnamon/Thyme EOs mixture exhibited no interactive effect against P. amylolyticus, but a synergistic effect against B. cereus. The combination of Oregano/Thyme EOs displayed the best antibacterial activity and showed a synergistic effect against B. cereus and P. amylolyticus bacteria. The Oregano/Thyme EOs mixture has potential application in food preservation to reduce the contamination of B. cereus and P. amylolyticus.


Asunto(s)
Bacillus cereus/efectos de los fármacos , Paenibacillus/efectos de los fármacos , Aceites de Plantas/farmacología , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Cinnamomum zeylanicum/metabolismo , Sinergismo Farmacológico , Microbiología de Alimentos , Conservación de Alimentos/métodos , Pruebas de Sensibilidad Microbiana , Origanum/metabolismo , Thymus (Planta)/metabolismo
3.
J Food Sci ; 84(6): 1439-1446, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31106862

RESUMEN

The fumigant toxicity of eight individual essential oils (EOs; basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree, and thyme) and one binary combination (thyme and oregano) for control of the rice weevil, Sitophilus oryzae, were investigated. In bioassays, all individual and combined EOs were toxic to the rice weevil. Eucalyptus EO exhibited the highest toxicity among the individual EO treatments, causing 100% mortality at a minimum concentration of 0.8 µL/mL after 24 hr of exposure. The combination treatment of oregano and thyme EO displayed higher fumigant activity than the individual oregano or thyme treatments. A stable oil-in-water nanoemulsion was evaluated using high-pressure homogenization (microfluidization [MF]) and varying the pressure and number of cycles. The droplet size of the emulsions was found to decrease from 217 to 71 nm and encapsulation efficiency increased from 37% to 84% with increasing MF pressure and number of cycles. The optimum conditions for preparing the mixture of oregano and thyme EO nanoemulsions were evaluated to be homogenization pressure of 103 MPa and three cycles. Incorporating an oregano:thyme nanoemulsion (0.75%) into cellulose nanocrystal (CNC) containing chitosan (CH/CNC), methyl cellulose (MC/CNC), and polylactic acid (PLA/CNC) composite films resulted in extended diffusion matrices causing 32% to 51% rice weevil mortality after 14 days exposure. Irradiation at 200 Gray alone caused 79% mortality and increased to 100% when combined with the bioactive chitosan film containing the oregano:thyme nanoemulsion. PRACTICAL APPLICATION: A binary combination of oregano:thyme has potential as a biopesticide against stored product pests. The encapsulation of EO nanoemulsions into biopolymeric support could be used for bioactive packaging to prevent food spoilage and extend shelf life. Combining bioactive films with irradiation can provide complete control of rice weevil in packaged rice. The system developed in this research may also be extended to explore other food-packaging films with various food models to control different types of stored pests.


Asunto(s)
Irradiación de Alimentos , Embalaje de Alimentos/instrumentación , Almacenamiento de Alimentos/métodos , Nanocompuestos , Aceites Volátiles/farmacología , Gorgojos/efectos de los fármacos , Animales , Agentes de Control Biológico , Biopolímeros/química , Quitosano , Cinnamomum zeylanicum , Grano Comestible , Emulsiones , Aceite de Eucalipto/farmacología , Embalaje de Alimentos/métodos , Fumigación , Origanum/química , Control de Plagas/métodos , Radiación Ionizante , Thymus (Planta)/química , Gorgojos/efectos de la radiación
4.
Nat Rev Drug Discov ; 17(4): 280-299, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29217836

RESUMEN

Neurodevelopmental disorders such as fragile X syndrome (FXS) result in lifelong cognitive and behavioural deficits and represent a major public health burden. FXS is the most frequent monogenic form of intellectual disability and autism, and the underlying pathophysiology linked to its causal gene, FMR1, has been the focus of intense research. Key alterations in synaptic function thought to underlie this neurodevelopmental disorder have been characterized and rescued in animal models of FXS using genetic and pharmacological approaches. These robust preclinical findings have led to the implementation of the most comprehensive drug development programme undertaken thus far for a genetically defined neurodevelopmental disorder, including phase IIb trials of metabotropic glutamate receptor 5 (mGluR5) antagonists and a phase III trial of a GABAB receptor agonist. However, none of the trials has been able to unambiguously demonstrate efficacy, and they have also highlighted the extent of the knowledge gaps in drug development for FXS and other neurodevelopmental disorders. In this Review, we examine potential issues in the previous studies and future directions for preclinical and clinical trials. FXS is at the forefront of efforts to develop drugs for neurodevelopmental disorders, and lessons learned in the process will also be important for such disorders.


Asunto(s)
Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Trastornos del Neurodesarrollo/tratamiento farmacológico , Neurotransmisores/farmacología , Neurotransmisores/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Food Microbiol ; 53(Pt B): 24-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678126

RESUMEN

The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus and Penicillium chrysogenum. The antifungal activity of the EOs was assessed by the minimum inhibitory concentration (MIC) using 96-well microplate analysis. The interactions between different EO combinations were done by the checkerboard technique. The highest antifungal activity was exhibited by oregano and thyme which showed lower MIC values amongst all the tested fungi. The antifungal activity of the other EOs could be appropriately ranked in a descending sequence of cinnamon, peppermint, tea tree and basil. Eucalyptus and mandarin showed the least efficiency as they could not inhibit any of the fungal growth at 10,000 ppm. The interaction between these two EOs also showed no interaction on the tested species. A combined formulation of oregano and thyme resulted in a synergistic effect, showing enhanced efficiency against A. flavus and A. parasiticus and P. chrysogenum. Mixtures of peppermint and tea tree produced synergistic effect against A. niger. Application of a modified Gompertz model considering fungal growth parameters like maximum colony diameter, maximum growth rate and lag time periods, under the various EO treatment scenarios, showed that the model could adequately describe and predict the growth of the tested fungi under these conditions.


Asunto(s)
Antifúngicos/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Aspergillus niger/efectos de los fármacos , Aspergillus niger/crecimiento & desarrollo , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Origanum/química , Thymus (Planta)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA